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Outline of Today’s Talk

Plasmoid instability in evolving current sheet and current sheet
disruption

Results from direct numerical simulations
Scalings of the current sheet width, linear growth rate, and
dominant wavenumber at disruption

A phenomenological model and analytic scalings in the high-S
regime

Plasmoid-mediated current sheet disruption & MHD
turbulence
Evidence of plasmoid instability in solar observation
Future perspectives
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Plasmoid Instability Brings New Perspectives to
Reconnection

The reconnection current sheet is unstable to secondary tearing
instability at high S, leading to current sheet fragmentation and
formation of plasmoids
Reconnection is fast even in resistive MHD, with reconnection
rate ∼ 0.01VAB, nearly independent of S. (Bhattacharjee et al.
2009; Cassak et al. 2009; Huang & Bhattacharjee 2010)
Even faster collisionless/Hall reconnection can be triggered if
the secondary current sheets become small than ion skin depth
di or Lamor radius ρi. (Daughton et al. 2009, Shepherd &
Cassak 2010, Huang et al. 2011)
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Plasmoids in Nature and Laboratories

Guo et al. APJL (2013)

Ebrahimi & Raman 2015, 2016 Jara-Almonte et al. PRL 2016
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Plasmoid Instability in Evolving Current Sheet

The linear growth rate in a Sweet-Parker current sheet
γmaxτA ∼ S1/4, which diverges as S→ ∞.
Because a Sweet-Parker sheet must be realized dynamically
over time, the current sheet will break apart before it reaches
the Sweet-Parker width for a high-S system. (Pucci & Velli
2014)
Plasmoid instability & current sheet disruption must be
studied in the context of an evolving current sheet.

Tenerani et al. (2015), Uzdensky & Loureiro (2016), Comisso et
al. (2016, 2017), Huang et al. (2017), etc.

Key Questions — When will the current sheet be disrupted?
How do current sheet width, growth rate, dominant
wavenumber at disruption scale with S and other parameters?
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Tearing Instability in Thinning Current Sheet

Harris sheet profile B = Bo tanh(x/a)ŷ

γτa ∼
{

S−3/5
a (ka)−2/5(1− k2a2)4/5, ka� S−1/4

a
S−1/3

a (ka)2/3, ka� S−1/4
a

Coppi et al. 1976

Here the Lundquist number Sa = aVA/η and the Alfvén time
scale τa = a/VA are defined with the current sheet thickness a.
As a(t) decreases in time, the growth rate γ increases and more
modes become unstable.

kL

γ
τ A

t
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Condition For Disruption

Inner layer half-width

δ =

(
γ

VA/a
1

(ka)2Sa

)1/4

a

Island half-width

w = 2

√
aB̃
kBx

.

Tearing instability becomes nonlinear when w = δ. At this time
J̃ ∼ J and the current sheet is “disrupted”.
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Estimating Island Size with Superposition of Modes

B̃ =

(
1

πL

∫ kdξ

kd/ξ
|B̂z(k′)|2dk′

)1/2

w = 2

√
aB̃

kdBx
.
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Evolution of Fluctuations, S = 2.5e6

Real Space Fourier Space

(a) (b)

Dominant Mode

Fastest Mode
Stability Threshold

Trend of 
Mode-Stretching

Fluctuations are stretched along the x direction by the outflow
jets: dk/dt = −kv′x
tg: amplitude starts to grow; td: disruption; ts: saturation
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Time History of Growth Rate and Reconnection Rate
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The “total” perturbation amplitude ||B̃z|| ≡
(∫ L
−L B̃2

z dx
)1/2

typically starts to grow when γτA ' O(1), and γτA � 1 at the
disruption
Onset of fast reconnection at t = td
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Snapshots from Disruption to Saturation
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Scalings from Simulations

(d)

(a) (b)

(c)
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A Phenomenological Model

Mode-stretching by outflow jets

dk
dt

= −kv′x

Evolution of the fluctuation spectrum f (k) ≡ |B̂z(k)|/B0L0

d f
dt

= ∂t f − kv′x∂k f =

(
γ(k, a(t)) − v′x

2 + 1
2L

dL
dt

)
f .

Stretching Linear Growth Advection Loss Length Evol.

Only consider the domain k ≥ π/L.
Disruption takes place when island size = inner layer width of
the dominant mode

Yi-Min Huang Plasmoid Instability and Fast Reconnection R&R Seminar 05/24/2019 13 / 25



Solving the Model Eq. by Method of Characteristics

Assuming dL/dt = 0 and v′x = VA/L, along a characteristic
k̂ = k̂0e−(t̂−t̂0),

f (k̂, t̂) = f (k̂0, t̂0) exp


∫ t̂

t̂0

γ̂
(

k̂(t̂′), t̂′
)

dt̂′︸ ︷︷ ︸
can be expressed in 2F1

− t̂− t̂0

2

 .

(b)(a)

Characteristics

Fastest Mode

Dominant Mode
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Condition for Disruption
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√
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Analytic Scalings of Disruption Conditions

For â = â0e−t̂/τ̂, f0(k̂0) = εk̂−χ, the disruption width

âd =caτ̂2/3
] S−1/3

[
−1

θ
W−1 (Ξ)

]−2/3

'caτ̂2/3
] S−1/3

[
log
(

ε−2 â(2χ+1)τ̂
0 τ̂1/2−1/θ

] S(1/θ−χ−3)/2
)]−2/3

,

where W−1 is the Lambert’s W function, τ̂] ≡ 5τ̂/(τ̂ + 5),

Ξ ≡ −θc3/2
a

(
cχε−2 â(2χ+1)τ̂

0

)−θ
τ̂1−θ/2
] S(θχ+3θ−1)/2,

θ ≡ 3
(4χ + 2) τ̂ + 5χ + 2

.

Dominant wave number k̂d = ckS−1/4 â−4/5
d , growth rate

γ̂d = cγS−1/2 â−3/2
d .
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Scalings from the Phenomenological Model

(a) (b)

(c) (d)
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The Effect of v′x Is More Significant In The Low-S Limit

104 106 108 1010 1012 1014 1016 1018 1020

S

100

101

102
γ̂
d

∼ S1/4

ε = 10−20, initial noise

ε = 10−20, system noise

ε = 10−20, no outflow

Calculations can be done with a system noise instead of an
initial noise, or without the effects of v′x.
if v′x → 0, with a proper translation of notations
f0(k̂)k̂−1/2 ↔ ŵ0(k̂)2/4â0, the analytical scalings from the
model are identical to that of Comisso et al. (2016, 2017) up to
the leading order logarithmic expansion.
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Application: Plasmoid-Mediated Reconnection in
Turbulence

Comisso, et al. ApJ 2018

Above k∗, current sheet disruption by plasmoid instability is
the main cascade mechanism
Turbulence fluctuations at higher k provide the source of noise
for current sheets at lower k

Yi-Min Huang Plasmoid Instability and Fast Reconnection R&R Seminar 05/24/2019 19 / 25



Plasmoids in 2D MHD Turbulence
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Dong et al. PRL 2018
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3D Plasmoid Instability =⇒ Self-Generated Turbulent
Reconnection

Huang & Bhattacharjee, APJ 2016
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Structure Functions in Turbulent Reconnection

(a)

(e) (f)

(c)

(d)

(b)

k⊥vl/k‖VA ∼ O(1) =⇒ strongly nonlinear regime
Eddy anisotropy is nearly scale-independent – as opposed to
k‖ ∼ k2/3

⊥ predicted by Goldreich & Sridhar
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IRIS Observation of UV Burst Event

Innes et al. APJ 2015
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UV Burst Event Driven By Footpoint Motion

Chitta et al. A&A (2017)
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Future Perspectives

The theoretical framework can be applied to models beyond
resistive MHD.
Predictions from theories/simulations may be tested with new
experiments, e.g. FLARE.
Roles of the plasmoid instability in MHD turbulence

turbulent reconnection
reconnection in turbulence

High resolution/cadence solar observations
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